Commit ae4ccb9b authored by wuyuming's avatar wuyuming

20231023

parent d8897800
...@@ -19,9 +19,15 @@ ...@@ -19,9 +19,15 @@
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/2023涨停(000)股本N连单10%大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/2023涨停(000)股本N连单10%大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/2023涨停(000)股本N连单大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/2023涨停(000)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/300/2022-2023涨停(300)股本N连单大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/300/2022-2023涨停(300)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/300/2022-2023涨停(300)股本N连单大于700w振幅.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/300/2023涨停(000)股本N连单大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/300/2023涨停(000)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/600/2022涨停(600)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/600/2023涨停(600)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/688/2022-2023涨停(688)股本N连单大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/688/2022-2023涨停(688)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/688/2023涨停(688)股本N连单大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/688/2023涨停(688)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/数据修复/2022-2023涨停(000)股本N连单10%大于700w炸板率.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/数据修复/2022-2023涨停(000)股本N连单大于700w市值.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/数据修复/2022-2023涨停(000)股本N连单大于700w振幅.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/数据修复/2022涨停(000)股本N连单10%大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/数据修复/2022涨停(000)股本N连单10%大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/数据修复/2022涨停(000)股本N连单大于700w.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2022-202307/不复权/数据修复/2022涨停(000)股本N连单大于700w.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/10日未涨停回封/2023-1-7月-10日未涨停首笔大单大于700w-b1-8%type第一个为B(小于1600W).csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/10日未涨停回封/2023-1-7月-10日未涨停首笔大单大于700w-b1-8%type第一个为B(小于1600W).csv" charset="GBK" />
...@@ -131,14 +137,9 @@ ...@@ -131,14 +137,9 @@
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-08-14-000.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/集合竞价数据/2023-08-14-000.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-08-23-000.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/集合竞价数据/2023-08-23-000.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-04-000.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-04-000.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-04-000.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-04-600.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-04-600.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-04-600.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-07炸板率.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-07炸板率.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-07炸板率.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-13炸板率.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-13炸板率.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-13炸板率.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-14炸板率.csv" charset="GBK" />
<file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-14炸板率.csv" charset="GBK" /> <file url="file://$PROJECT_DIR$/集合竞价数据/2023-09-14炸板率.csv" charset="GBK" />
</component> </component>
</project> </project>
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
import csv
import math
import os
import time
import numpy as np
import pandas as pd
root='/Users/yumingwu/Downloads/Stk_Day/'
path =os.listdir(root)
path.sort()
guben1 = pd.read_csv('../../../../600打板/流通股本.csv',encoding='utf-8')
guben1['变更日期']=pd.to_datetime(guben1['变更日期'])
data = pd.read_csv('./2022-2023涨停(300)股本N连单大于700w.csv',encoding='gbk')
data['日期']=pd.to_datetime(data['日期'])
with open('./2022-2023涨停(300)股本N连单大于700w市值'+'.csv','w',encoding='gbk',newline='') as csfile:
writer =csv.writer(csfile)
writer.writerow(['代码','名称','日期', '昨日收盘价','开盘价','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','昨日是否涨停','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间'])
for index,item in data.iterrows():
dataS = pd.read_csv(root + item['代码']+'.csv', encoding='gbk')
dataS['时间'] = pd.to_datetime(dataS['时间'])
data1 = dataS[dataS['时间'] < item['日期']]
item2 = data1.iloc[-1]
item3 = data1.iloc[-2]
code = item['代码'][2:8] + "." + item['代码'][0:2]
guben = guben1[guben1['代码'] == code]
guben = guben.sort_values('变更日期', ascending=False)
gubenitem1 = guben[guben['变更日期'] <= item['日期']]
if len(gubenitem1) == 0:
gubenitem1 = guben.iloc[-1]
else:
gubenitem1 = gubenitem1.iloc[0]
huanshou = item2['成交量(股)'] / gubenitem1['流通A股']
shizhi = gubenitem1['流通A股'] * item2['收盘价'] / 100000000.0
zhangting =0;
if item2['收盘价']/item3['收盘价']>1.198:
zhangting=1
writer.writerow([item['代码'],
item['名称'],
item['日期'],
item['昨日收盘价'],
item['开盘价'],
item['最低价'],
item['最高价涨幅'],
item['成交量'],
item['成交额'],
item['换手率'],
item['买入价格'],
item['卖出价格'],
zhangting,
item['盈利'],
item['涨幅'],
shizhi,
item['跟单明细'],
item['连单笔数'],
item['总金额'],
item['时间']
])
...@@ -8,7 +8,7 @@ import pandas as pd ...@@ -8,7 +8,7 @@ import pandas as pd
root='/Users/yumingwu/Downloads/Stk_Day_QFQ/' root='/Users/yumingwu/Downloads/Stk_Day_QFQ/'
path =os.listdir(root) path =os.listdir(root)
data = pd.read_csv('./2022-2023涨停(300)股本N连单大于700w.csv',encoding='gbk') data = pd.read_csv('./2022-2023涨停(300)股本N连单大于700w市值.csv',encoding='gbk')
file000 = open('./2022-2023涨停(300)股本N连单大于700w炸板率.csv','w',encoding='gbk',newline='') file000 = open('./2022-2023涨停(300)股本N连单大于700w炸板率.csv','w',encoding='gbk',newline='')
writer000 = csv.writer(file000) writer000 = csv.writer(file000)
...@@ -116,7 +116,7 @@ for index,item in data.iterrows(): ...@@ -116,7 +116,7 @@ for index,item in data.iterrows():
arr3 = arr3[len(arr3)-3:len(arr3)] arr3 = arr3[len(arr3)-3:len(arr3)]
rate3 = (arr3[0]+arr3[1]+arr3[2])/3 rate3 = (arr3[0]+arr3[1]+arr3[2])/3
zhangting = 0;
...@@ -134,7 +134,7 @@ for index,item in data.iterrows(): ...@@ -134,7 +134,7 @@ for index,item in data.iterrows():
item['换手率'], item['换手率'],
item['买入价格'], item['买入价格'],
item['卖出价格'], item['卖出价格'],
zhangting, item['昨日是否涨停'],
item['盈利'], item['盈利'],
item['涨幅'], item['涨幅'],
item['流通市值'], item['流通市值'],
......
This source diff could not be displayed because it is too large. You can view the blob instead.
import csv
import math
import os
import time
import numpy as np
import pandas as pd
root='/Volumes/Elements SE/逐笔202301-03/'
import datetime
data=pd.read_csv('./2022-2023涨停(600)股本.csv',encoding='gbk')
data['日期']=pd.to_datetime(data['日期'])
data = data.groupby('日期')
percent=0.01
name = pd.read_excel('/Users/yumingwu/Desktop/沪深A股.xlsx')
with open('./2023涨停(600)股本N连单10%大于700w'+'.csv','w',encoding='gbk',newline='') as csfile:
writer =csv.writer(csfile)
writer.writerow(['代码','名称','日期', '昨日收盘价','开盘价','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间'])
for day,dataR in data:
print(day)
if(day<pd.to_datetime('2023-01-01')):
continue
daystr= day.strftime("%Y-%m-%d")
for index,item in dataR.iterrows():
current_time = datetime.datetime.now()
print(item['代码'])
print("现在时间是: " + str(current_time))
# if item['代码']!='SZ002851':
# continue
if os.path.exists(root + daystr + '/' + item['代码'][2:8] + '.csv') == False:
print(root + daystr + '/' + item['代码'][2:8] + '.csv')
continue
zhubiData= pd.read_csv(root+daystr+'/'+item['代码'][2:8]+'.csv')
zhubiData=zhubiData[zhubiData['Time']>'09:25:00']
zhubiData['amount']=zhubiData['Volume']*zhubiData['BuyOrderPrice']
zhangtingjia=zhubiData['BuyOrderPrice'].max()
maxPrice= zhubiData['Price'].max()
maxPriceItem = zhubiData[zhubiData['Price']>=maxPrice]
maxPriceItem=maxPriceItem.iloc[0]
zhangtingdata = zhubiData[zhubiData['BuyOrderID']==maxPriceItem['BuyOrderID']]
# stockNum = 7000000 / (zhangtingjia-0.01)
# zhubiData = zhubiData[zhubiData['BuyOrderVolume'] > stockNum]
# zhangtingjiaData=zhubiData[zhubiData['Price']>=item['昨日收盘价']*1.09]
zhangtingjiaData = zhubiData[zhubiData['BuyOrderPrice'] >= zhangtingjia-0.03]
zhangtingjiaData=zhangtingjiaData[zhangtingjiaData['Type']=='B']
zhangtingjiaData=zhangtingjiaData.groupby('BuyOrderID')
zhangtingjiaData1=pd.DataFrame()
dicARR = {}
keyArr = []
for id, zhangtingjiaDataItem in zhangtingjiaData:
zhangtingjiaDataItem1 =zhubiData[zhubiData['BuyOrderID']==id].copy()
zhangtingjiaDataItem1 = zhangtingjiaDataItem1[zhangtingjiaDataItem1['BuyOrderPrice'] >= zhangtingjia-0.03]
amount = zhangtingjiaDataItem1['amount'].sum()
if amount<1000000:
continue
vol = zhangtingjiaDataItem1['Volume'].sum()
p0 = zhangtingjiaDataItem1.iloc[0]
p1 = zhangtingjiaDataItem1.iloc[-1]
time =p0['Time']
TranID1 = p0['TranID']
TranID2 = p1['TranID']
buyId = p0['BuyOrderID']
buyidData= {
'amount':amount,
'vol': vol,
'TranID1': TranID1,
'TranID2': TranID2,
'buyId':buyId,
'time':time
}
key =str(TranID1)
dicARR[key] = buyidData
keyArr.append(TranID1)
if len(dicARR)==0:
continue
keyArr.sort()
for trainIDIndex in np.arange(len(keyArr)):
key = keyArr[trainIDIndex]
subkeyArr = keyArr[trainIDIndex+1:len(keyArr)]
item_key = dicARR[str(key)]
vol = item_key['vol']
amount = item_key['amount']
TranID1 = item_key['TranID1']
TranID2 = item_key['TranID2']
buyId = item_key['buyId']
time = item_key['time']
preItem = item_key
itemArr = []
itemArr.append(item_key)
amountZ = amount
flag = False
for subkey in subkeyArr:
item1 = dicARR[str(subkey)]
vol_01 = item1['vol']
amount_01 = item1['amount']
TranID1_01 = item1['TranID1']
TranID2_01 = item1['TranID2']
if vol_01>vol*(1+percent):
break
if vol_01<vol*(1-percent):
break
if TranID1_01 !=preItem['TranID2']+1:
break
amountZ = amountZ+amount_01
itemArr.append(item1)
preItem = item1
liandan= []
for detailItem in itemArr:
info=str(detailItem['vol']) + ',' + str(int(detailItem['amount'])) + ',' + str(
detailItem['TranID1']) + ',' + str(detailItem['TranID2']) + ',' + str(
detailItem['buyId']) + ',' + str(detailItem['time'])
liandan.append(info)
info='--|--'.join(liandan)
if amountZ>=7000000:
flag =True
codename = item['代码'][2:8] + "." + item['代码'][0:2]
codename = name[name['股票代码'] == codename]
if len(codename) == 0:
codename = ''
else:
codename = codename.iloc[0]['股票简称']
writer.writerow(
[item['代码'],
codename,
item['日期'],
item['昨日收盘价'],
item['开盘价'],
item['最低价'],
item['最高价涨幅'],
item['成交量'],
item['成交额'],
item['换手率'],
item['买入价格'],
item['卖出价格'],
item['盈利'],
item['涨幅'],
item['流通市值'],
info,
len(liandan),
amountZ,
item1['time']
])
break
if flag:
break
import csv
import math
import os
import time
import numpy as np
import pandas as pd
root='/Users/yumingwu/Downloads/Stk_Day/'
path =os.listdir(root)
path.sort()
guben1 = pd.read_csv('../../../../600打板/流通股本.csv',encoding='utf-8')
guben1['变更日期']=pd.to_datetime(guben1['变更日期'])
data = pd.read_csv('./2022涨停(600)股本N连单大于700w.csv',encoding='gbk')
data['日期']=pd.to_datetime(data['日期'])
with open('./2022-2023涨停(600)股本N连单大于700w市值'+'.csv','w',encoding='gbk',newline='') as csfile:
writer =csv.writer(csfile)
writer.writerow(['代码','名称','日期', '昨日收盘价','开盘价','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','昨日是否涨停','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间'])
for index,item in data.iterrows():
dataS = pd.read_csv(root + item['代码']+'.csv', encoding='gbk')
dataS['时间'] = pd.to_datetime(dataS['时间'])
data1 = dataS[dataS['时间'] < item['日期']]
item2 = data1.iloc[-1]
item3 = data1.iloc[-2]
code = item['代码'][2:8] + "." + item['代码'][0:2]
guben = guben1[guben1['代码'] == code]
guben = guben.sort_values('变更日期', ascending=False)
gubenitem1 = guben[guben['变更日期'] <= item['日期']]
if len(gubenitem1) == 0:
gubenitem1 = guben.iloc[-1]
else:
gubenitem1 = gubenitem1.iloc[0]
huanshou = item2['成交量(股)'] / gubenitem1['流通A股']
shizhi = gubenitem1['流通A股'] * item2['收盘价'] / 100000000.0
zhangting =0;
if item2['收盘价']/item3['收盘价']>1.098:
zhangting=1
writer.writerow([item['代码'],
item['名称'],
item['日期'],
item['昨日收盘价'],
item['开盘价'],
item['最低价'],
item['最高价涨幅'],
item['成交量'],
item['成交额'],
item['换手率'],
item['买入价格'],
item['卖出价格'],
zhangting,
item['盈利'],
item['涨幅'],
shizhi,
item['跟单明细'],
item['连单笔数'],
item['总金额'],
item['时间']
])
import csv
import os
import time
from _decimal import Decimal
import numpy as np
import pandas as pd
root='/Users/yumingwu/Downloads/Stk_Day_QFQ/'
path =os.listdir(root)
data = pd.read_csv('./2022-2023涨停(600)股本N连单大于700w炸板率.csv',encoding='gbk')
file000 = open('./2022-2023涨停(600)股本N连单大于700w振幅.csv','w',encoding='gbk',newline='')
writer000 = csv.writer(file000)
writer000.writerow(
['代码','名称','日期', '昨日收盘价','开盘价','开盘涨幅','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','昨日是否涨停','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间','炸板率','涨停次数','炸板次数','触板次数','炸板幅度','涨停次日溢价率','次日总溢价率','最近3次触板溢价','一年最高价跌幅','半年最高价跌幅','一日最高价跌幅','三日最高价跌幅','6日最高价跌幅','10日最高价跌幅','12日最高价跌幅','一个月最高价跌幅','3个月最高价跌幅','9个月最高价跌幅',
'1个月最低价涨幅','3个月最低价涨幅','半年最低价涨幅','9个月最低价涨幅','一年最低价涨幅','振幅','昨日振幅','10日涨幅'])
for index,item in data.iterrows():
day = item['日期']
day =pd.to_datetime(day)
code= item['代码']+'.csv'
codeData=pd.read_csv(root+code,encoding='gbk')
codeData['时间'] = pd.to_datetime(codeData['时间'])
codeData =codeData[codeData['时间']<day]
codeData0=codeData.iloc[-1]
codeData1 = codeData.iloc[-2]
codeData=codeData[len(codeData)-10:len(codeData)]
min = codeData0['收盘价']/(codeData['最低价'].min())-1
writer000.writerow(
[item['代码'],
item['名称'],
item['日期'],
item['昨日收盘价'],
item['开盘价'],
item['开盘涨幅'],
item['最低价'],
item['最高价涨幅'],
item['成交量'],
item['成交额'],
item['换手率'],
item['买入价格'],
item['卖出价格'],
item['昨日是否涨停'],
item['盈利'],
item['涨幅'],
item['流通市值'],
item['跟单明细'],
item['连单笔数'],
item['总金额'],
item['时间'],
item['炸板率'],
item['涨停次数'],
item['炸板次数'],
item['触板次数'],
item['炸板幅度'],
item['涨停次日溢价率'],
item['次日总溢价率'],
item['最近3次触板溢价'],
item['一年最高价跌幅'],
item['半年最高价跌幅'],
item['一日最高价跌幅'],
item['三日最高价跌幅'],
item['6日最高价跌幅'],
item['10日最高价跌幅'],
item['12日最高价跌幅'],
item['一个月最高价跌幅'],
item['3个月最高价跌幅'],
item['9个月最高价跌幅'],
item['1个月最低价涨幅'],
item['3个月最低价涨幅'],
item['半年最低价涨幅'],
item['9个月最低价涨幅'],
item['一年最低价涨幅'],
(codeData0['最高价']-codeData0['最低价'])/codeData1['收盘价'],
(codeData0['最高价'] - codeData0['最低价']) / codeData0['收盘价'],
min
])
import csv
import os
import time
from _decimal import Decimal
import numpy as np
import pandas as pd
root='/Users/yumingwu/Downloads/Stk_Day_QFQ/'
path =os.listdir(root)
data = pd.read_csv('./2022-2023涨停(600)股本N连单大于700w市值.csv',encoding='gbk')
file000 = open('./2022-2023涨停(600)股本N连单大于700w炸板率.csv','w',encoding='gbk',newline='')
writer000 = csv.writer(file000)
zhangtingpercent = 1.098
writer000.writerow(
['代码','名称','日期', '昨日收盘价','开盘价','开盘涨幅','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','昨日是否涨停','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间','炸板率','涨停次数','炸板次数','触板次数','炸板幅度','涨停次日溢价率','次日总溢价率','最近3次触板溢价','一年最高价跌幅','半年最高价跌幅','一日最高价跌幅','三日最高价跌幅','6日最高价跌幅','10日最高价跌幅','12日最高价跌幅','一个月最高价跌幅','3个月最高价跌幅','9个月最高价跌幅',
'1个月最低价涨幅','3个月最低价涨幅','半年最低价涨幅','9个月最低价涨幅','一年最低价涨幅'])
for index,item in data.iterrows():
day = item['日期']
day =pd.to_datetime(day)
code= item['代码']+'.csv'
print(item['代码'])
if os.path.exists(root + code) == False:
continue
codeData=pd.read_csv(root+code,encoding='gbk')
codeData['时间'] = pd.to_datetime(codeData['时间'])
codeData =codeData[codeData['时间']<day]
day1=day-pd.offsets.DateOffset(years=1)
codeData = codeData[codeData['时间'] >= day1]
if len(codeData)==0:
continue
day2 = day - pd.offsets.DateOffset(months=6)
day1_month = day - pd.offsets.DateOffset(months=1)
day3_month = day - pd.offsets.DateOffset(months=3)
day9_month = day - pd.offsets.DateOffset(months=9)
codeData_6_month = codeData[codeData['时间'] >= day2]
codeData_1_month = codeData[codeData['时间'] >= day1_month]
codeData_3_month = codeData[codeData['时间'] >= day3_month]
codeData_9_month = codeData[codeData['时间'] >= day9_month]
codeData1 = codeData[len(codeData)-1:len(codeData)]
codeData3= codeData[len(codeData) - 3:len(codeData)]
codeData6 = codeData[len(codeData) - 6:len(codeData)]
codeData9 = codeData[len(codeData) - 10:len(codeData)]
codeData12 = codeData[len(codeData) - 12:len(codeData)]
item_y=codeData.iloc[-1]
item_y2 = codeData.iloc[-1]
if item_y['收盘价'] / item_y2['收盘价'] > zhangtingpercent:
zhangting = 1
rate_year = item_y['收盘价']/codeData['最高价'].max()
rate_year_min = item_y['收盘价'] / codeData['最低价'].min()
rate_6_month = item_y['收盘价'] / codeData_6_month['最高价'].max()
rate_6_month_min = item_y['收盘价'] / codeData_6_month['最低价'].min()
rate_1_month = item_y['收盘价'] / codeData_1_month['最高价'].max()
rate_1_month_min = item_y['收盘价'] / codeData_1_month['最低价'].min()
rate_3_month = item_y['收盘价'] / codeData_3_month['最高价'].max()
rate_3_month_min = item_y['收盘价'] / codeData_3_month['最低价'].min()
rate_9_month = item_y['收盘价'] / codeData_9_month['最高价'].max()
rate_9_month_min = item_y['收盘价'] / codeData_9_month['最低价'].min()
rate_1 = item_y['收盘价'] / codeData1['最高价'].max()
rate_3= item_y['收盘价'] / codeData3['最高价'].max()
rate_6 = item_y['收盘价'] / codeData6['最高价'].max()
rate_9 = item_y['收盘价'] / codeData9['最高价'].max()
rate_12 = item_y['收盘价'] / codeData12['最高价'].max()
zhangtingTime=0
zhaBanTime=0
zhaBanTimefudu=0
zhangtingyijia=0
zhangtingyijiazong = 0
arr3 = []
for i in np.arange(len(codeData)):
if i==0:
continue
if i==len(codeData)-1:
continue
item0 = codeData.iloc[i-1]
item1 = codeData.iloc[i]
item2 = codeData.iloc[i+1]
if item1['最高价']/item0['收盘价']>zhangtingpercent:
zhangtingyijiazong = zhangtingyijiazong + item2['开盘价'] / item1['最高价'] - 1.0014
arr3.append(item2['开盘价'] / item1['最高价'] - 1.0014)
if item1['最高价']==item1['收盘价']:
zhangtingTime=zhangtingTime+1
zhangtingyijia = zhangtingyijia + item2['开盘价'] / item1['最高价'] - 1.0014
else:
zhaBanTime=zhaBanTime+1
zhaBanTimefudu=zhaBanTimefudu+(item2['开盘价']/item1['最高价']-1.0014)
rate =0
if zhangtingTime>0 or zhaBanTime>0:
rate = zhaBanTime/(zhangtingTime+zhaBanTime)
if zhaBanTime!=0:
zhaBanTimefudu=zhaBanTimefudu/zhaBanTime
if zhangtingTime!=0:
zhangtingyijia=zhangtingyijia/zhangtingTime
if (zhangtingTime +zhaBanTime)!= 0:
zhangtingyijiazong = zhangtingyijiazong / (zhangtingTime+zhaBanTime)
rate3=-100
if len(arr3)>=3:
arr3 = arr3[len(arr3)-3:len(arr3)]
rate3 = (arr3[0]+arr3[1]+arr3[2])/3
writer000.writerow(
[item['代码'],
item['名称'],
item['日期'],
item['昨日收盘价'],
item['开盘价'],
float(item['开盘价'])/float(item['昨日收盘价']),
item['最低价'],
item['最高价涨幅'],
item['成交量'],
item['成交额'],
item['换手率'],
item['买入价格'],
item['卖出价格'],
item['昨日是否涨停'],
item['盈利'],
item['涨幅'],
item['流通市值'],
item['跟单明细'],
item['连单笔数'],
item['总金额'],
item['时间'],
rate,
zhangtingTime,
zhaBanTime,
zhangtingTime+zhaBanTime,
zhaBanTimefudu,
zhangtingyijia,
zhangtingyijiazong,
rate3,
rate_year,
rate_6_month,
rate_1,
rate_3,
rate_6,
rate_9,
rate_12,
rate_1_month,
rate_3_month,
rate_9_month,
rate_1_month_min,
rate_3_month_min,
rate_6_month_min,
rate_9_month_min,
rate_year_min
])
...@@ -11,9 +11,10 @@ import datetime ...@@ -11,9 +11,10 @@ import datetime
data=pd.read_csv('./2022-2023涨停(000)股本.csv',encoding='gbk') data=pd.read_csv('./2022-2023涨停(000)股本.csv',encoding='gbk')
data['日期']=pd.to_datetime(data['日期']) data['日期']=pd.to_datetime(data['日期'])
data = data.groupby('日期') data = data.groupby('日期')
percent=0.01
name = pd.read_excel('/Users/yumingwu/Desktop/沪深A股.xlsx') name = pd.read_excel('/Users/yumingwu/Desktop/沪深A股.xlsx')
with open('./2023涨停(000)股本N连单10%大于700w'+'.csv','w',encoding='gbk',newline='') as csfile: with open('./2023涨停(000)股本N连单b1-7%大于700w'+'.csv','w',encoding='gbk',newline='') as csfile:
writer =csv.writer(csfile) writer =csv.writer(csfile)
writer.writerow(['代码','名称','日期', '昨日收盘价','开盘价','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间']) writer.writerow(['代码','名称','日期', '昨日收盘价','开盘价','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间'])
for day,dataR in data: for day,dataR in data:
...@@ -77,7 +78,8 @@ with open('./2023涨停(000)股本N连单10%大于700w'+'.csv','w',encoding='gbk ...@@ -77,7 +78,8 @@ with open('./2023涨停(000)股本N连单10%大于700w'+'.csv','w',encoding='gbk
'TranID1': TranID1, 'TranID1': TranID1,
'TranID2': TranID2, 'TranID2': TranID2,
'buyId':buyId, 'buyId':buyId,
'time':time 'time':time,
'price': p0['Price']
} }
key =str(TranID1) key =str(TranID1)
...@@ -120,9 +122,9 @@ with open('./2023涨停(000)股本N连单10%大于700w'+'.csv','w',encoding='gbk ...@@ -120,9 +122,9 @@ with open('./2023涨停(000)股本N连单10%大于700w'+'.csv','w',encoding='gbk
TranID1_01 = item1['TranID1'] TranID1_01 = item1['TranID1']
TranID2_01 = item1['TranID2'] TranID2_01 = item1['TranID2']
if vol_01>vol*1.1: if vol_01>vol*(1+percent):
break break
if vol_01<vol*0.9: if vol_01<vol*(1-percent):
break break
if TranID1_01 !=preItem['TranID2']+1: if TranID1_01 !=preItem['TranID2']+1:
break break
...@@ -139,7 +141,7 @@ with open('./2023涨停(000)股本N连单10%大于700w'+'.csv','w',encoding='gbk ...@@ -139,7 +141,7 @@ with open('./2023涨停(000)股本N连单10%大于700w'+'.csv','w',encoding='gbk
info='--|--'.join(liandan) info='--|--'.join(liandan)
if amountZ>=7000000: if amountZ>=7000000 and item1['price']/item['昨日收盘价']>=1.07:
flag =True flag =True
codename = item['代码'][2:8] + "." + item['代码'][0:2] codename = item['代码'][2:8] + "." + item['代码'][0:2]
......
...@@ -8,9 +8,9 @@ import pandas as pd ...@@ -8,9 +8,9 @@ import pandas as pd
root='/Users/yumingwu/Downloads/Stk_Day_QFQ/' root='/Users/yumingwu/Downloads/Stk_Day_QFQ/'
path =os.listdir(root) path =os.listdir(root)
data = pd.read_csv('./2022涨停(000)股本N连单10%大于700w.csv',encoding='gbk') data = pd.read_csv('./2022涨停(000)股本N连单大于700w市值.csv',encoding='gbk')
file000 = open('./2022-2023涨停(000)股本N连单10%大于700w炸板率.csv','w',encoding='gbk',newline='') file000 = open('./2022-2023涨停(000)股本N连单大于700w炸板率.csv','w',encoding='gbk',newline='')
writer000 = csv.writer(file000) writer000 = csv.writer(file000)
writer000.writerow( writer000.writerow(
['代码','名称','日期', '昨日收盘价','开盘价','开盘涨幅','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','昨日是否涨停','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间','炸板率','涨停次数','炸板次数','触板次数','炸板幅度','涨停次日溢价率','次日总溢价率','最近3次触板溢价','一年最高价跌幅','半年最高价跌幅','一日最高价跌幅','三日最高价跌幅','6日最高价跌幅','10日最高价跌幅','12日最高价跌幅','一个月最高价跌幅','3个月最高价跌幅','9个月最高价跌幅', ['代码','名称','日期', '昨日收盘价','开盘价','开盘涨幅','最低价','最高价涨幅','成交量','成交额','换手率','买入价格','卖出价格','昨日是否涨停','盈利','涨幅','流通市值','跟单明细','连单笔数','总金额','时间','炸板率','涨停次数','炸板次数','触板次数','炸板幅度','涨停次日溢价率','次日总溢价率','最近3次触板溢价','一年最高价跌幅','半年最高价跌幅','一日最高价跌幅','三日最高价跌幅','6日最高价跌幅','10日最高价跌幅','12日最高价跌幅','一个月最高价跌幅','3个月最高价跌幅','9个月最高价跌幅',
...@@ -115,7 +115,7 @@ for index,item in data.iterrows(): ...@@ -115,7 +115,7 @@ for index,item in data.iterrows():
arr3 = arr3[len(arr3)-3:len(arr3)] arr3 = arr3[len(arr3)-3:len(arr3)]
rate3 = (arr3[0]+arr3[1]+arr3[2])/3 rate3 = (arr3[0]+arr3[1]+arr3[2])/3
zhangting = 0;
...@@ -133,7 +133,7 @@ for index,item in data.iterrows(): ...@@ -133,7 +133,7 @@ for index,item in data.iterrows():
item['换手率'], item['换手率'],
item['买入价格'], item['买入价格'],
item['卖出价格'], item['卖出价格'],
zhangting, item['昨日是否涨停'],
item['盈利'], item['盈利'],
item['涨幅'], item['涨幅'],
item['流通市值'], item['流通市值'],
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment